首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Sign Language Recognition for Arabic Alphabets Using Transfer Learning Technique
  • 本地全文:下载
  • 作者:Mohammed Zakariah ; Yousef Ajmi Alotaibi ; Deepika Koundal
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2022
  • 卷号:2022
  • DOI:10.1155/2022/4567989
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Sign language is essential for deaf and mute people to communicate with normal people and themselves. As ordinary people tend to ignore the importance of sign language, which is the mere source of communication for the deaf and the mute communities. These people are facing significant downfalls in their lives because of these disabilities or impairments leading to unemployment, severe depression, and several other symptoms. One of the services they are using for communication is the sign language interpreters. But hiring these interpreters is very costly, and therefore, a cheap solution is required for resolving this issue. Therefore, a system has been developed that will use the visual hand dataset based on an Arabic Sign Language and interpret this visual data in textual information. The dataset used consists of 54049 images of Arabic sign language alphabets consisting of 1500\ images per class, and each class represents a different meaning by its hand gesture or sign. Various preprocessing and data augmentation techniques have been applied to the images. The experiments have been performed using various pretrained models on the given dataset. Most of them performed pretty normally and in the final stage, the EfficientNetB4 model has been considered the best fit for the case. Considering the complexity of the dataset, models other than EfficientNetB4 do not perform well due to their lightweight architecture. EfficientNetB4 is a heavy-weight architecture that possesses more complexities comparatively. The best model is exposed with a training accuracy of 98 percent and a testing accuracy of 95 percent.
国家哲学社会科学文献中心版权所有