首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Image Segmentation of a Sewer Based on Deep Learning
  • 本地全文:下载
  • 作者:Min He ; Qinnan Zhao ; Huanhuan Gao
  • 期刊名称:Sustainability
  • 印刷版ISSN:2071-1050
  • 出版年度:2022
  • 卷号:14
  • 期号:11
  • 页码:6634
  • DOI:10.3390/su14116634
  • 语种:English
  • 出版社:MDPI, Open Access Journal
  • 摘要:An accurate assessment of the type and extent of sewer damage is an important prerequisite for maintenance and repair. At present, distinguishing drainage pipe defect types in the engineering field mainly relies on the human eye, which is time consuming, labor intensive, and subjective. Some studies have used deep learning to classify the types of pipe defects, but this method can only identify one main pipe defect. However, sometimes a combination of defects, such as corrosion and precipitation on a section of pipe wall, can be classified as one category by picture classification, which is significantly different from the reality. Furthermore, the deep learning method for defect classification is unable to pinpoint the precise location and severity of a defect or estimate the number of flaws and the cost of maintenance and repair. Therefore, an image segmentation method based on deep convolutional neural networks is proposed to achieve pixel-level image segmentation of defect regions while classifying pipe defects. Compared with the deep learning network for defect classification, it can segment a variety of defects and reduce the number of samples, which is convenient for defect measurement. First, the image defect locations of seven typical defects were manually labeled to create the dataset. Then, a model based on the SegNet network was used to label defect areas automatically in an image. The pipeline image dataset was used to test the previously trained model using the CamVid dataset. Finally, the model was applied to drainage pipe network images that were provided by periscope and closed-circuit television inspection cameras, and the pixel accuracy of image segmentation reached 80%. From the results, it can be concluded that image segmentation and annotation technology based on deep learning is applicable to sewer defect detection. The identification results of pipeline defects were accurate. The SegNet model is a reliable method for image analysis of pipeline defects, which can accurately evaluate the type and degree of sewer damage.
国家哲学社会科学文献中心版权所有