期刊名称:ISPRS International Journal of Geo-Information
电子版ISSN:2220-9964
出版年度:2022
卷号:11
期号:4
页码:252
DOI:10.3390/ijgi11040252
语种:English
出版社:MDPI AG
摘要:The classification of unmanned aerial vehicle hyperspectral images is of great significance in agricultural monitoring. This paper studied a fine classification method for crops based on feature transform combined with random forest (RF). Aiming at the problem of a large number of spectra and a large amount of calculation, three feature transform methods for dimensionality reduction, minimum noise fraction (MNF), independent component analysis (ICA), and principal component analysis (PCA), were studied. Then, RF was used to finely classify a variety of crops in hyperspectral images. The results showed: (1) The MNF–RF combination was the best ideal classification combination in this study. The best classification accuracies of the MNF–RF random sample set in the Longkou and Honghu areas were 97.18% and 80.43%, respectively; compared with the original image, the RF classification accuracy was improved by 6.43% and 8.81%, respectively. (2) For this study, the overall classification accuracy of RF in the two regions was positively correlated with the number of random sample points. (3) The image after feature transform was less affected by the number of sample points than the original image. The MNF transform curve of the overall RF classification accuracy in the two regions varied with the number of random sample points but was the smoothest and least affected by the number of sample points, followed by the PCA transform and ICA transform curves. The overall classification accuracies of MNF–RF in the Longkou and Honghu areas did not exceed 0.50% and 3.25%, respectively, with the fluctuation of the number of sample points. This research can provide reference for the fine classification of crops based on UAV-borne hyperspectral images.