首页    期刊浏览 2025年01月21日 星期二
登录注册

文章基本信息

  • 标题:Determination of the heat capacity of cellulosic biosamples employing diverse machine learning approaches
  • 本地全文:下载
  • 作者:Mohsen Karimi ; Marzieh Khosravi ; Reza Fathollahi
  • 期刊名称:Energy Science & Engineering
  • 电子版ISSN:2050-0505
  • 出版年度:2022
  • 卷号:10
  • 期号:6
  • 页码:1925-1939
  • DOI:10.1002/ese3.1155
  • 语种:English
  • 出版社:John Wiley & Sons, Ltd.
  • 摘要:Abstract Heat capacity is among the most well‐known thermal properties of cellulosic biomass samples. This study assembles a general machine learning model to estimate the heat capacity of the cellulosic biomass samples with different origins. Combining the uncertainty and ranking analyses over 819 artificial intelligence models from seven different categories confirmed that the least‐squares support vector regression (LSSVR) with the Gaussian kernel function is the best estimator. This model is validated using 700 laboratory heat capacities of four cellulosic biomass samples in wide temperature ranges (absolute average relative deviation = 0.32%, mean square errors = 1.88 × 10−3, and R2 = 0.999991). The data validity investigation approved that only one out of 700 experimental data is an outlier. The LSSVR model considers the effect of the cellulosic samples' crystallinity, temperature, and sulfur and ash content on their heat capacity. The overall prediction accuracy of the LSSVR is more than 62% better than the achieved accuracy using the empirical correlation.
国家哲学社会科学文献中心版权所有