摘要:The aim of this paper is to solve the problem for battery electric vehicles of low-precision and time-consuming inspection. A novel method of driving cycle development for battery electric vehicles’ operational safety is proposed in this paper. First, three inspection items are proposed based on relevant testing standards. The inspection calculation method of operational safety is developed based on the acceleration changing rate. Then the multi-cycle inspection method with the stable pedal mode is developed, and the Gauss filtering algorithm is applied for data preprocessing. A rapid inspection driving cycle construction method based on support vector machine is proposed, and a driving cycle is built with a total time of 204 s by fusing and splicing kinematic fragments. Finally, the proposed inspection calculation method is used to validate the operational safety inspection items by tracking the established rapid inspection driving cycle based on the test bench. The results shown are those that qualified the range of acceleration changing rate for driving stability [−0.35, −0.04]. The range for gliding smoothness is [0.05, 0.09]. The range for braking coordination is [−0.04, 0.095]. The maximum RMSE between the constructed rapid inspection segments is 9%, and the maximum RMSE between the tested driving segments is 6%. Test results meet design requirements. The thresholds for operational safety inspection items are evaluated based on the test results. We set less than 0.5 as the safety threshold for driving stability. During the experiment, gliding was less than 0.1 as the safety threshold for gliding comfort, and during braking it was less than 0.1 as the safety threshold for vehicle braking coordination.