期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
印刷版ISSN:2194-9042
电子版ISSN:2194-9050
出版年度:2022
卷号:V-1-2022
页码:145-152
DOI:10.5194/isprs-annals-V-1-2022-145-2022
语种:English
出版社:Copernicus Publications
摘要:GaoFen-7 (GF-7) satellite mission is further expanding the very high resolution 3D mapping application. Carrying the first civilian Chinese sub-meter resolution stereo satellite sensors, GF-7 satellite was launched on November 7, 2019. With 0.65 meter resolution on backward view and 0.8 meter resolution forward view, GF-7 has been designed to meet the demand of natural resource monitoring, land surveying, and other mapping applications in China. The use of GF-7 for 3D city reconstruction is unfortunately restricted by the fixed large stereo view angle of forward and backward cameras with +26 and −5 degrees respectively which is not optimal for dense stereo matching in urban regions. In this paper we intensively evaluate the quality of the GF-7 datasets by performing a series of urban monitoring applications, including road detection, building extraction and 3D reconstruction. In addition, we propose a 3D reconstruction workflow which uses the land cover classification result to refine the stereo matching result. Six sub-urban regions are selected from the available datasets in the middle of Germany. The results show that basic elements in urban scenes like buildings and roads could be detected from GF-7 datasets with high accuracy. With the proposed workflow, a 3D city model with a visually observed good quality can be delivered.
关键词:GF-7; Deep Learning; satellite stereo imagery; 3D reconstruction; building segmentation; road segmentation