首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:EVALUATING PIXEL-BASED AND OBJECT-BASED APPROACHES FOR FOREST ABOVE-GROUND BIOMASS ESTIMATION USING A COMBINATION OF OPTICAL, SAR, AND AN EXTREME GRADIENT BOOSTING MODEL
  • 本地全文:下载
  • 作者:H. Tamiminia ; B. Salehi ; M. Mahdianpari
  • 期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  • 印刷版ISSN:2194-9042
  • 电子版ISSN:2194-9050
  • 出版年度:2022
  • 卷号:V-3-2022
  • 页码:485-492
  • DOI:10.5194/isprs-annals-V-3-2022-485-2022
  • 语种:English
  • 出版社:Copernicus Publications
  • 摘要:The above-ground biomass (AGB) estimation monitoring provides a powerful tool for the assessment of carbon emission and sequestration. Using remote sensing technique is an environmentally friendly way of biomass estimation. Thus, this paper investigated optical (i.e. Landsat 8 OLI and Sentinel-2), synthetic aperture radar (SAR) (global phased array type L-band SAR (PALSAR/PALSAR-2) and Sentinel-1), and their integration for AGB estimation of the Pack demonstration forest in Warrensburg, NY. Importantly, a LiDAR AGB raster of the study area was used as reference data for training/testing purposes. Then, an extreme gradient boosting (Xgboost) machine learning model was used to predict biomass values. The major goal of this study was to compare the performance of pixel-based and object-based image analysis (OBIA) for the AGB estimation. Results indicated that the object-based approach improved the RMSE of AGB prediction about 6.28 Mg/ha for optical + SAR, 6.17 Mg/ha for SAR, and 5.6 Mg/ha for optical data in comparison to the pixel-based approach. Moreover, the combination of optical and SAR data increased the prediction accuracy regardless of feature extraction approach.
  • 关键词:Extreme gradient boosting (Xgboost); forest biomass; Object-based image analysis (OBIA); Synthetic aperture radar (SAR); Machine learning; Airborne light detection and ranging (LiDAR)
国家哲学社会科学文献中心版权所有