首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Risk Levels Classification of Near-Crashes in Naturalistic Driving Data
  • 本地全文:下载
  • 作者:Hasan A. H. Naji ; Qingji Xue ; Nengchao Lyu
  • 期刊名称:Sustainability
  • 印刷版ISSN:2071-1050
  • 出版年度:2022
  • 卷号:14
  • 期号:10
  • 页码:6032
  • DOI:10.3390/su14106032
  • 语种:English
  • 出版社:MDPI, Open Access Journal
  • 摘要:Identifying dangerous events from driving behavior data has become a vital challenge in intelligent transportation systems. In this study, we compared machine and deep learning-based methods for classifying the risk levels of near-crashes. A dataset was built for the study by considering variables related to naturalistic driving, temporal data, participants, and road geometry, among others. Hierarchical clustering was applied to categorize the near-crashes into several risk levels based on high-risk driving variables. The adaptive lasso variable model was adopted to reduce factors and select significant driving risk factors. In addition, several machine and deep learning models were used to compare near-crash classification performance by training the models and examining the model with testing data. The results showed that the deep learning models outperformed the machine learning and statistical models in terms of classification performance. The LSTM model achieved the highest performance in terms of all evaluation metrics compared with the state-of-the-art models (accuracy = 96%, recall = 0.93, precision = 0.88, and F1-measure = 0.91). The LSTM model can improve the classification accuracy and prediction of most near-crash events and reduce false near-crash classification. The finding of this study can benefit transportation safety in predicting and classifying driving risk. It can provide useful suggestions for reducing the incidence of critical events and forward road crashes.
国家哲学社会科学文献中心版权所有