首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Using Simple, Explainable Neural Networks to Predict the Madden‐Julian Oscillation
  • 本地全文:下载
  • 作者:Zane K. Martin ; Elizabeth A. Barnes ; Eric Maloney
  • 期刊名称:Journal of Advances in Modeling Earth Systems
  • 电子版ISSN:1942-2466
  • 出版年度:2022
  • 卷号:14
  • 期号:5
  • 页码:n/a-n/a
  • DOI:10.1029/2021MS002774
  • 语种:English
  • 出版社:John Wiley & Sons, Ltd.
  • 摘要:Abstract Few studies have utilized machine learning techniques to predict or understand the Madden‐Julian oscillation (MJO), a key source of subseasonal variability and predictability. Here, we present a simple framework for real‐time MJO prediction using shallow artificial neural networks (ANNs). We construct two ANN architectures, one deterministic and one probabilistic, that predict a real‐time MJO index using maps of tropical variables. These ANNs make skillful MJO predictions out to ∼18 days in October‐March and ∼11 days in April‐September, outperforming conventional linear models and efficiently capturing aspects of MJO predictability found in more complex, dynamical models. The flexibility and explainability of simple ANN frameworks are highlighted through varying model input and applying ANN explainability techniques that reveal sources and regions important for ANN prediction skill. The accessibility, performance, and efficiency of this simple machine learning framework is more broadly applicable to predict and understand other Earth system phenomena.
国家哲学社会科学文献中心版权所有