出版社:The Japanese Society for Artificial Intelligence
摘要:Generation-base dialogue system tends to produce generic response sentences. In order to improve the diversity of response sentences by the generation-base dialogue system, the response text retrieved by the retrieval-base model can be input to the generation-base model as reference response text, so that the generation-base model can generate highly diverse response sentences. However, the prior works show that the generation-base dialogue system often ignores the reference response text, resulting in the response sentences that is unrelated to the reference response text. In this work, we propose the Dialogue-Filling method, which can utilize 100% of the reference response text by masking the response sentences with a text-filling technique. We built variants of Dialogue-Filling method with DialoGPT model. Experiments on the DailyDialog Dataset demonstrate that our Dialogue-Filling method outperforms the baseline method on the dialogue generation task.