首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:Dependent Bayesian nonparametric modeling of compositional data using random Bernstein polynomials
  • 本地全文:下载
  • 作者:Claudia Wehrhahn ; Andrés F. Barrientos ; Alejandro Jara
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2022
  • 卷号:16
  • 期号:1
  • 页码:2346-2405
  • DOI:10.1214/22-EJS2002
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We discuss Bayesian nonparametric procedures for the regression analysis of compositional responses, that is, data supported on a multivariate simplex. The procedures are based on a modified class of multivariate Bernstein polynomials and on the use of dependent stick-breaking processes. A general model and two simplified versions of the general model are discussed. Appealing theoretical properties such as continuity, association structure, support, and consistency of the posterior distribution are established. Additionally, we exploit the use of spike-and-slab priors for choosing the version of the model that best adapts to the complexity of the underlying true data-generating distribution. The performance of the proposed model is illustrated in a simulation study and in an application to solid waste data from Colombia.
  • 关键词:density regression;dependent Dirichlet processes;Dirichlet process;Fully nonparametric regression
国家哲学社会科学文献中心版权所有