首页    期刊浏览 2024年12月14日 星期六
登录注册

文章基本信息

  • 标题:Smooth bootstrapping of copula functionals
  • 本地全文:下载
  • 作者:Maximilian Coblenz ; Oliver Grothe ; Klaus Herrmann
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2022
  • 卷号:16
  • 期号:1
  • 页码:2550-2606
  • DOI:10.1214/22-EJS2007
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:The smooth bootstrap for estimating copula functionals in small samples is investigated. It can be used both to gauge the distribution of the estimator in question and to augment the data. Issues arising from kernel density and distribution estimation in the copula domain are addressed, such as how to avoid the bounded domain, which bandwidth matrix to choose, and how the smoothing can be carried out. Furthermore, we investigate how the smooth bootstrap impacts the underlying dependence structure or the functionals in question and under which conditions it does not. We provide specific examples and simulations that highlight advantages and caveats of the approach.
  • 关键词:Bandwidth matrix;Bandwidth selection;Data augmentation;dependence distortion;Kernel distribution estimation;kernel smoothing;smooth bootstrap
国家哲学社会科学文献中心版权所有