首页    期刊浏览 2025年03月03日 星期一
登录注册

文章基本信息

  • 标题:Bayesian Non-Parametric Factor Analysis for Longitudinal Spatial Surfaces
  • 本地全文:下载
  • 作者:Samuel I. Berchuck ; Mark Janko ; Felipe A. Medeiros
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2022
  • 卷号:17
  • 期号:2
  • 页码:435-464
  • DOI:10.1214/20-BA1253
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:We introduce a Bayesian non-parametric spatial factor analysis model with spatial dependency induced through a prior on factor loadings. For each column of the loadings matrix, spatial dependency is encoded using a probit stick-breaking process (PSBP) and a multiplicative gamma process shrinkage prior is used across columns to adaptively determine the number of latent factors. By encoding spatial information into the loadings matrix, meaningful factors are learned that respect the observed neighborhood dependencies, making them useful for assessing rates over space. Furthermore, the spatial PSBP prior can be used for clustering temporal trends, allowing users to identify regions within the spatial domain with similar temporal trajectories, an important task in many applied settings. In the manuscript, we illustrate the model’s performance in simulated data, but also in two real-world examples: longitudinal monitoring of glaucoma and malaria surveillance across the Peruvian Amazon. The R package spBFA, available on CRAN, implements the method.
  • 关键词:62F15;62G08;62H25;Bayesian non-parametrics;Dimension reduction;factor analysis;probit stick-breaking process;spatiotemporal clustering
国家哲学社会科学文献中心版权所有