首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Klasifikasi Citra Menggunakan Convolutional Neural Network (CNN) pada Caltech 101
  • 本地全文:下载
  • 作者:Wayan Suartika Eka Putra ; Arya Yudhi Wijaya ; Rully Soelaiman
  • 期刊名称:Jurnal Teknik ITS
  • 印刷版ISSN:2301-9271
  • 电子版ISSN:2337-3539
  • 出版年度:2016
  • 卷号:5
  • 期号:1
  • 页码:65-69
  • DOI:10.12962/j23373539.v5i1.15696
  • 语种:Spanish
  • 出版社:Lembaga Penelitian dan Pengabdian kepada Masyarakat
  • 摘要:Deep Learning adalah sebuah bidang keilmuan baru dalam bidang Machine Learning yang akhir-akhir ini berkembang karena perkembangan teknologi GPU accelaration. Deep Learning memiliki kemampuan yang sangat baik dalam visi komputer. Salah satunya adalah pada kasus klasifikasi objek pada citra. Dengan mengimplementasikan salah satu metode machine learning yang dapat digunakan untuk klasifikasi citra objek yaitu CNN. Metode CNN terdiri dari dua tahap. Tahap pertama adalah klasifikasi citra menggunakan feedforward. Tahap kedua merupakan tahap pembelajaran dengan metode backpropagation. Sebelum dilakukan klasifikasi, terlebih dahulu dilakukan praproses dengan metode wrapping dan cropping untuk memfokuskan objek yang akan diklasifikasi. Selanjutnya dilakukan training menggunakan metode feedforward dan backpropagation. Terakhir adalah tahap klasifikasi menggunakan metode feedforward dengan bobot dan bias yang diperbarui. Hasil uji coba dari klasifikasi citra objek dengan tingkat confusion yang berbeda pada basis data Caltech 101 menghasilkan rata-rata nilai akurasi mencapai. Sehingga dapat disimpulkan bahwa metode CNN yang digunakan pada Tugas Akhir ini mampu melakukan klasifikasi dengan baik.
  • 关键词:Deep learning;Convolution Neural Network;Caltech 101
国家哲学社会科学文献中心版权所有