首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Segmentasi Pelanggan Menggunakan Algoritma K-Means dan Analisis RFM di Ova Gaming E-Sports Arena Kediri
  • 本地全文:下载
  • 作者:Kartika Zahretta Wijaya ; Arif Djunaidi ; Faizal Mahananto
  • 期刊名称:Jurnal Teknik ITS
  • 印刷版ISSN:2301-9271
  • 电子版ISSN:2337-3539
  • 出版年度:2021
  • 卷号:10
  • 期号:2
  • 页码:230-237
  • DOI:10.12962/j23373539.v10i2.67707
  • 语种:Spanish
  • 出版社:Lembaga Penelitian dan Pengabdian kepada Masyarakat
  • 摘要:Selama sepuluh tahun berdiri, Ova Gaming E-sports Arena belum menerapkan strategi retensi pelanggan. Persaingan bisnis di daerah ini dapat dibilang cukup ketat, karena dalam radius 500 m terdapat dua kompetitor bisnis di bidang yang sama. Dengan semakin banyaknya e-sports arena di Kediri, Ova tentu harus melakukan perancangan strategi retensi pelanggan di samping meningkatkan kualitas layanan. Penelitian ini melaku-kan segmentasi pelanggan Ova Gaming E-Sport Arena mengguna-kan model RFM dan algoritma K-Means. Algoritma K-Means dipilih karena memiliki hasil clustering yang lebih baik diban-dingkan metode lainnya. Jumlah segmen optimum didapatkan dengan menggunakan metode Elbow dan Silhouette Coefficient. Dilakukan perhitungan Customer Live Value (CLV) dengan meng-gunakan bobot RFM perhitungan AHP untuk mengetahui urutan prioritas strategi retensi berdasarkan rata-rata CLV segmen terbesar. Setiap segmen pelanggan yang terbentuk selanjutnya dilakukan analisis karakteristik RFM, demografi, dan perilaku sebagai landasan penyusunan strategi retensi pelanggan. Melalui segmentasi pelanggan, diharapkan dapat menjadi upaya dalam meningkatkan pertumbuhan jangka panjang dan profitabilitas perusahaan dengan mengetahui menerapkan strategi retensi pelanggan yang tepat. Hasil penentuan jumlah segmen optimal menggunakan metode Elbow dan Silhouette Coefficient sebesar empat. Berdasarkan hasil tersebut, dalam penelitian ini digu-nakan segmen pelanggan sebesar empat. Berdasarkan analisis karakteristik, masing-masing segmen diurutkan sesuai hasil perhitungan CLV menggunakan pembobotan AHP diberi label superstar, everyday, occasional, dan dormant. Hasil analisis demo-grafi menggunakan atribut usia dan pekerjaan menghasilkan pelanggan usia muda dan berstatus pelajar sebagai target pasar utama perusahaan. Hasil analisis perilaku menunjukkan bahwa hari jumat dan sabtu sebagai waktu ramai. Berdasarkan ketiga hasil analisis yang telah dilakukan, strategi retensi pelanggan menghasilkan antara lain penawaran program loyalitas, pemberian reward, publisitas pemberlakuan protokol kesehatan, dan pemberian informasi layanan dan produk baru.
  • 关键词:Algoritma K-Means;Analytical Hierachy Process;Clustering;Model RFM;Segmentasi Pelanggan
国家哲学社会科学文献中心版权所有