首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:Long Short Term Memory-based anomaly detection applied to an industrial dosing pump
  • 本地全文:下载
  • 作者:Anthony Fombonne de Galatheau ; Alexandru-Liviu Olteanu ; Nathalie Julien
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2022
  • 卷号:55
  • 期号:2
  • 页码:240-245
  • DOI:10.1016/j.ifacol.2022.04.200
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractPerforming predictive maintenance in the case of equipment failures is a relatively recent and difficult topic, in part due to the heterogeneity of industrial processes but also to the increasing amounts of information that can be gathered. We investigate the topic of anomaly detection using Long Short Term Memory for failures of an industrial dosing pump. We show that we are able to obtain accurate results corresponding to real failures leading the way to set up actions in order to avoid such failures in the future.
  • 关键词:KeywordsAnomaly detectionLong Short Term Memorysmart factoryDeep Learning
国家哲学社会科学文献中心版权所有