首页    期刊浏览 2024年12月14日 星期六
登录注册

文章基本信息

  • 标题:Virtual Machine Placement Using Energy Efficient Particle Swarm Optimization in Cloud Datacenter
  • 本地全文:下载
  • 作者:Madhumala R. B. ; Tiwari Harshvardhan ; Devaraj Verma C.
  • 期刊名称:Cybernetics and Information Technologies
  • 印刷版ISSN:1311-9702
  • 电子版ISSN:1314-4081
  • 出版年度:2021
  • 卷号:21
  • 期号:1
  • 页码:62-72
  • DOI:10.2478/cait-2021-0005
  • 语种:English
  • 出版社:Bulgarian Academy of Science
  • 摘要:Efficient resource allocation through Virtual machine placement in a cloud datacenter is an ever-growing demand. Different Virtual Machine optimization techniques are constructed for different optimization problems. Particle Swam Optimization (PSO) Algorithm is one of the optimization techniques to solve the multidimensional virtual machine placement problem. In the algorithm being proposed we use the combination of Modified First Fit Decreasing Algorithm (MFFD) with Particle Swarm Optimization Algorithm, used to solve the best Virtual Machine packing in active Physical Machines to reduce energy consumption; we first screen all Physical Machines for possible accommodation in each Physical Machine and then the Modified Particle Swam Optimization (MPSO) Algorithm is used to get the best fit solution.. In our paper, we discuss how to improve the efficiency of Particle Swarm Intelligence by adapting the efficient mechanism being proposed. The obtained result shows that the proposed algorithm provides an optimized solution compared to the existing algorithms.
国家哲学社会科学文献中心版权所有