摘要:The widespread use of renewable energy resources requires more immediate and effective fire alarms as a preventive measure. The fire is usually weak in the initial stages, which is not conducive to detection and identification. This paper validates a solution to resolve that problem by a flame detection algorithm that is more sensitive to small flames. Based on Yolov3, the parallel convolution structure of Inception is used to obtain multi-size image information. In addition, the receptive field of the convolution kernel is increased with the dilated convolution so that each convolution output contains a range of information to avoid information omission of tiny flames. The model accuracy has improved by introducing a Feature Pyramid Network in the feature extraction stage that has enhanced the feature fusion capability of the model. At the same time, a flame detection database for early fire has been established, which contains more than 30 fire scenarios and is suitable for flame detection under various challenging scenes. Experiments validate the proposed method not only improves the performance of the original algorithm but are also advantageous in comparison with other state-of-the-art object detection networks, and its false positives rate reaches 1.2% in the test set.