首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:DEEP LEARNING BASED HYBRID APPROACH OF DETECTING FRAUDULENT TRANSACTIONS
  • 本地全文:下载
  • 作者:MIN JONG CHEON ; DONG HEE LEE ; HAN SEON JOO
  • 期刊名称:Journal of Theoretical and Applied Information Technology
  • 印刷版ISSN:1992-8645
  • 电子版ISSN:1817-3195
  • 出版年度:2021
  • 卷号:99
  • 期号:16
  • 语种:English
  • 出版社:Journal of Theoretical and Applied
  • 摘要:As daily transactions made with credit cards have been increasing, fraudulent transactions have also continuously increased. Therefore, the importance of detecting anomalous transactions has kept rising. The given dataset, from Kaggle, consists of imbalanced data, 99.83% of normal data and 0.17% of fraud data. Therefore, in order to solve this imbalance problem, we decided to construct a fraud detecting algorithm. Through constructing a new model with a hybrid approach of deep learning and machine learning, which is composed of a Bi-LSTM-Autoencoder and Isolation Forest, we successfully detected fraudulent transactions in the given dataset. This proposed model yielded an 87% detection rate of fraudulent transactions. Compared to other models (Isolation Forest, Local Outlier, and LSTM-Autoencoder), which show 79%, 3% and 82% detection rates, respectively, our proposed model attained the highest rate. On the contrary, when evaluated by accuracy score, our proposed model did not show a higher score. Even though our model has a similar accuracy score compared to other models and does not implement the Variational Autoencoder for feature selection, this model could potentially be utilized as an effective process to detect fraudulent transactions, especially with the number of global cases increasing along with the need for productivity, quicker detection.
  • 关键词:Artificial Intelligence;Machine Learning;Deep Learning;EEG;Olfactory Impairment;Diagnos
国家哲学社会科学文献中心版权所有