首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Arithmetic Circuit Complexity of Division and Truncation
  • 本地全文:下载
  • 作者:Pranjal Dutta ; Gorav Jindal ; Anurag Pandey
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2021
  • 卷号:21
  • 语种:English
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:Given polynomials fghF[x1xn] such that f=gh , where both g and h are computable by arithmetic circuits of size s, we show that f can be computed by a circuit of size \poly(sdeg(h)) . This solves a special case of division elimination for high-degree circuits (Kaltofen'87 \& WACT'16). The result is an exponential improvement over Strassen's classic result (Strassen'73) when deg(h) is \poly(s) and deg(f) is exp(s), since the latter gives an upper bound of \poly(sdeg(f)) . Further, we show that any univariate polynomial family (fd)d, defined by the initial segment of the power series expansion of rational function gd(x)hd(x) up to degree d (i.e.~fd=gdhdmodxd+1 ), where circuit size of g is sd and degree of gd is at most d, can be computed by a circuit of size \poly(sddeg(hd)logd) . We also show a hardness result when the degrees of the rational functions are high (i.e.~(d)), assuming hardness of the integer factorization problem.
  • 关键词:Transcendental power series;Algebraic power series;arithmetic circuits;Division elimination;integer factorization
国家哲学社会科学文献中心版权所有