首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Untangling Circular Drawings: Algorithms and Complexity
  • 本地全文:下载
  • 作者:Bhore, Sujoy ; Li, Guangping ; Nöllenburg, Martin
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2021
  • 卷号:212
  • DOI:10.4230/LIPIcs.ISAAC.2021.19
  • 语种:English
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We consider the problem of untangling a given (non-planar) straight-line circular drawing δ_G of an outerplanar graph G = (V,E) into a planar straight-line circular drawing by shifting a minimum number of vertices to a new position on the circle. For an outerplanar graph G, it is clear that such a crossing-free circular drawing always exists and we define the circular shifting number shift°(δ_G) as the minimum number of vertices that need to be shifted to resolve all crossings of δ_G. We show that the problem Circular Untangling, asking whether shift°(δ_G) ≤ K for a given integer K, is NP-complete. Based on this result we study Circular Untangling for almost-planar circular drawings, in which a single edge is involved in all the crossings. In this case we provide a tight upper bound shift°(δ_G) ≤ ⌊n/2⌋-1, where n is the number of vertices in G, and present a polynomial-time algorithm to compute the circular shifting number of almost-planar drawings.
  • 关键词:graph drawing;straight-line drawing;outerplanarity;NP-hardness;untangling
国家哲学社会科学文献中心版权所有