首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:Fine-Grained Hardness for Edit Distance to a Fixed Sequence
  • 本地全文:下载
  • 作者:Abboud, Amir ; Vassilevska Williams, Virginia
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2021
  • 卷号:198
  • DOI:10.4230/LIPIcs.ICALP.2021.7
  • 语种:English
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Nearly all quadratic lower bounds conditioned on the Strong Exponential Time Hypothesis (SETH) start by reducing k-SAT to the Orthogonal Vectors (OV) problem: Given two sets A,B of n binary vectors, decide if there is an orthogonal pair a ∈ A, b ∈ B. In this paper, we give an alternative reduction in which the set A does not depend on the input to k-SAT; thus, the quadratic lower bound for OV holds even if one of the sets is fixed in advance.Using the reductions in the literature from OV to other problems such as computing similarity measures on strings, we get hardness results of a stronger kind: there is a family of sequences {S_n}_{n = 1}^{∞}, |S_n| = n such that computing the Edit Distance between an input sequence X of length n and the (fixed) sequence S_n requires n^{2-o(1)} time under SETH.
  • 关键词:SAT;edit distance;fine-grained complexity;conditional lower bound;sequence alignment
国家哲学社会科学文献中心版权所有