首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:On Counting (Quantum-)Graph Homomorphisms in Finite Fields of Prime Order
  • 本地全文:下载
  • 作者:Lagodzinski, J.A.Gregor ; Göbel, Andreas ; Casel, Katrin
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2021
  • 卷号:198
  • DOI:10.4230/LIPIcs.ICALP.2021.91
  • 语种:English
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study the problem of counting the number of homomorphisms from an input graph G to a fixed (quantum) graph ̄{H} in any finite field of prime order ℤ_p. The subproblem with graph H was introduced by Faben and Jerrum [ToC'15] and its complexity is still uncharacterised despite active research, e.g. the very recent work of Focke, Goldberg, Roth, and Zivný [SODA'21]. Our contribution is threefold.First, we introduce the study of quantum graphs to the study of modular counting homomorphisms. We show that the complexity for a quantum graph ̄{H} collapses to the complexity criteria found at dimension 1: graphs. Second, in order to prove cases of intractability we establish a further reduction to the study of bipartite graphs. Lastly, we establish a dichotomy for all bipartite (K_{3,3}$1{e}, {domino})-free graphs by a thorough structural study incorporating both local and global arguments. This result subsumes all results on bipartite graphs known for all prime moduli and extends them significantly. Even for the subproblem with p = 2 this establishes new results.
  • 关键词:Algorithms;Theory;Quantum Graphs;Bipartite Graphs;Graph Homomorphisms;Modular Counting;Complexity Dichotomy
国家哲学社会科学文献中心版权所有