首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:Faster Algorithms for Bounded Tree Edit Distance
  • 本地全文:下载
  • 作者:Akmal, Shyan ; Jin, Ce
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2021
  • 卷号:198
  • DOI:10.4230/LIPIcs.ICALP.2021.12
  • 语种:English
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Tree edit distance is a well-studied measure of dissimilarity between rooted trees with node labels. It can be computed in O(n³) time [Demaine, Mozes, Rossman, and Weimann, ICALP 2007], and fine-grained hardness results suggest that the weighted version of this problem cannot be solved in truly subcubic time unless the APSP conjecture is false [Bringmann, Gawrychowski, Mozes, and Weimann, SODA 2018].We consider the unweighted version of tree edit distance, where every insertion, deletion, or relabeling operation has unit cost. Given a parameter k as an upper bound on the distance, the previous fastest algorithm for this problem runs in O(nk³) time [Touzet, CPM 2005], which improves upon the cubic-time algorithm for k≪ n^{2/3}. In this paper, we give a faster algorithm taking O(nk² log n) time, improving both of the previous results for almost the full range of log n ≪ k≪ n/√{log n}.
  • 关键词:tree edit distance;edit distance;dynamic programming
国家哲学社会科学文献中心版权所有