首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:Development and Assessment of an Isotropic Four-Equation Model for Heat Transfer of Low Prandtl Number Fluids
  • 本地全文:下载
  • 作者:Xingkang Su ; Xianwen Li ; Xiangyang Wang
  • 期刊名称:Frontiers in Energy Research
  • 电子版ISSN:2296-598X
  • 出版年度:2022
  • 卷号:10
  • DOI:10.3389/fenrg.2022.816560
  • 语种:English
  • 出版社:Frontiers Media S.A.
  • 摘要:In the simple gradient diffusion hypothesis, the turbulent Prandtl number (Prt) with a constant of 0.85 is difficult to accurately predict for liquid metals having low Prandtl numbers (Pr), while a four-equation model can improve this solution by introducing the turbulence time-scale into the calculation of turbulent thermal diffusivity. However, the four-equation model’s transport form and numerical stability are so complex that suitable commercial code is lacking. Therefore, an isotropic four-equation model with simple Dirichlet wall boundary conditions is built in the present work. Based on the open-source computational fluid dynamics program OpenFOAM, the fully developed velocity, temperature, Reynolds stress, and heat flux of low Pr fluids (Pr = 0.01–0.05) in the parallel plane are obtained by numerical simulation. The results show that the time-average statistics predicted using the present four-equation model are in good agreement with the direct numerical simulation data. Then, the isotropic four-equation model is used to analyze the flow and heat of liquid metal (Pr = 0.01) in a quadrilateral infinite rod bundle. The numerical results are compared with the various and available experimental relationships. The Nusselt numbers calculated using the isotropic four-equation model are betweenness the available correlations, while the turbulent Prandtl number model using a constant of 0.85 over predicts heat transfer. More detailed local heat transfer phenomena and distribution of low Pr fluids are obtained using the present isotropic four-equation model.
国家哲学社会科学文献中心版权所有