摘要:Background: Air pollution is one of the most important causes of respiratory diseases that people face in big cities today. Suspended particulates, carbon monoxide, sulfur dioxide, ozone, and nitrogen dioxide are the five major pollutants of air that pose many problems to human health. We aimed to provide an approach for modeling and analyzing the spatiotemporal model of ozone distribution based on Geographical Information System (GIS). Methods: In the first step, by considering the accuracy of different interpolation methods, the Inverse distance weighted (IDW) method was selected as the best interpolation method for mapping the concentration of ozone in Tehran, Iran. In the next step, according to the daily data of Ozone pollutants, the daily, monthly, and annual mean concentrations maps were prepared for the years 2015, 2016, and 2017. Results: Spatial and temporal analysis of the distribution of ozone pollutants in Tehran was performed. The highest concentrations of O3 are found in the southwest and parts of the central part of the city. Finally, a neural network was developed to predict the amount of ozone pollutants according to meteorological parameters. Conclusion: The results show that meteorological parameters such as temperature, velocity and direction of the wind, and precipitation are influential on O3 concentration.