首页    期刊浏览 2024年12月13日 星期五
登录注册

文章基本信息

  • 标题:A Spark Parallel Betweenness Centrality Computation and its Application to Community Detection Problems
  • 本地全文:下载
  • 作者:Daniel Gomez González ; Luis Llana Díaz ; Cristóbal Pareja
  • 期刊名称:Journal of Universal Computer Science
  • 印刷版ISSN:0948-6968
  • 出版年度:2022
  • 卷号:28
  • 期号:2
  • 页码:160-180
  • DOI:10.3897/jucs.80688
  • 语种:English
  • 出版社:Graz University of Technology and Know-Center
  • 摘要:The Brandes algorithm has the lowest computational complexity for computing the betweenness centrality measures of all nodes or edges in a given graph. Its numerous applications make it one of the most used algorithms in social network analysis. In this work, we provide a parallel version of the algorithm implemented in Spark. The experimental results show that the parallel algorithm scales as the number of cores increases. Finally, we provide a version of the well-known community detection Girvan-Newman algorithm, based on the Spark version of Brandes algorithm.
国家哲学社会科学文献中心版权所有