首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Terahertz toroidal metasurface biosensor for sensitive distinction of lung cancer cells
  • 本地全文:下载
  • 作者:Zhang Chiben ; Zhang Chiben ; Xue Tingjia
  • 期刊名称:Nanophotonics
  • 印刷版ISSN:2192-8606
  • 电子版ISSN:2192-8614
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:101-109
  • DOI:10.1515/nanoph-2021-0520
  • 语种:English
  • 出版社:Walter de Gruyter GmbH
  • 摘要:Lung cancer is the most frequently life-threatening disease and the prominent cause of cancer-related mortality among human beings worldwide, where poor early diagnosis and expensive detection costs are considered as significant reasons. Here, we try to tackle this issue by proposing a novel label-free and low-cost strategy for rapid detection and distinction of lung cancer cells relying on plasmonic toroidal metasurfaces at terahertz frequencies. Three disjoint regions are displayed in identifiable intensity-frequency diagram, which could directly help doctors determine the type of lung cancer cells for clinical treatment. The metasurface is generated by two mirrored gold split ring resonators with subwavelength sizes. When placing analytes on the metasurface, apparent shifts of both the resonance frequency and the resonance depth can be observed in the terahertz transmission spectra. The theoretical sensitivity of the biosensor over the reflective index reaches as high as 485.3 GHz/RIU. Moreover, the proposed metasurface shows high angular stability for oblique incident angle from 0 to 30°, where the maximum resonance frequency shift is less than 0.66% and the maximum transmittance variation keeps below 1.33%. To experimentally verify the sensing strategy, three types of non-small cell lung cancer cells (Calu-1, A427, and 95D) are cultured with different concentrations and their terahertz transmission spectra are measured with the proposed metasurface biosensor. The two-dimensional fingerprint diagram considering both the frequency and transmittance variations of the toroidal resonance dip is obtained, where the curves for different cells are completely separated with each other. This implies that we can directly distinguish the type of the analyte cells and its concentration by only single spectral measurement. We envisage that the proposed strategy has potential for clinical diagnosis and significantly expands the capabilities of plasmonic metamaterials in biological detection.
国家哲学社会科学文献中心版权所有