摘要:Energy loss through windows can be high relatively compared to other opaque surfaces because insulation performance of fenestration parts is lower in the building envelope. Electrically heated window systems are used to improve the indoor environment, prevent condensation, and increase building energy efficiency. The purpose of this study is to analyze the thermal behaviors of a heated window under a field experiment condition. Experiments were conducted during the winter season (i.e., January and February) with the energy-efficient house that residents occupy. To collect measured data from the experimental house, temperature and heat flux meter sensors were used for the analysis of heat flow patterns. Such measured data were used to calculate heat gain ratios and compare temperature and dew point distribution profiles of heated windows with input power values under the changed condition in the operating temperature of the heated glazing. Results from this study indicated that the input average heat gain ratio was analyzed to be 75.2% in the south-facing and 83.8% in the north-facing at nighttime. Additionally, compared to January, reducing the operating temperature of the heated glazing by 3 °C decreased the input energy in February by 44% and 41% for the south-facing and north-facing windows, respectively. Through such field measurement study, various interesting results that could not be found in controlled laboratory chamber conditions were captured, indicating that the necessity of establishing various control strategies should be considered for the development and commercialization of heated windows.