首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Binocular mirror–symmetric microsaccadic sampling enables Drosophila hyperacute 3D vision
  • 本地全文:下载
  • 作者:Joni Kemppainen ; Ben Scales ; Keivan Razban Haghighi
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2022
  • 卷号:119
  • 期号:12
  • DOI:10.1073/pnas.2109717119
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance To move efficiently, animals must continuously work out their x,y,z positions with respect to real-world objects, and many animals have a pair of eyes to achieve this. How photoreceptors actively sample the eyes’ optical image disparity is not understood because this fundamental information-limiting step has not been investigated in vivo over the eyes’ whole sampling matrix. This integrative multiscale study will advance our current understanding of stereopsis from static image disparity comparison to a morphodynamic active sampling theory. It shows how photomechanical photoreceptor microsaccades enable Drosophila superresolution three-dimensional vision and proposes neural computations for accurately predicting these flies’ depth-perception dynamics, limits, and visual behaviors. Neural mechanisms behind stereopsis, which requires simultaneous disparity inputs from two eyes, have remained mysterious. Here we show how ultrafast mirror-symmetric photomechanical contractions in the frontal forward-facing left and right eye photoreceptors give Drosophila superresolution three-dimensional (3D) vision. By interlinking multiscale in vivo assays with multiscale simulations, we reveal how these photoreceptor microsaccades—by verging, diverging, and narrowing the eyes’ overlapping receptive fields—channel depth information, as phasic binocular image motion disparity signals in time. We further show how peripherally, outside stereopsis, microsaccadic sampling tracks a flying fly’s optic flow field to better resolve the world in motion. These results change our understanding of how insect compound eyes work and suggest a general dynamic stereo-information sampling strategy for animals, robots, and sensors.
  • 关键词:encompound eyesstereovisionactive samplingadaptive optics
国家哲学社会科学文献中心版权所有