期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2022
卷号:119
期号:12
DOI:10.1073/pnas.2122708119
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Significance
Hatching from the zona pellucida is a prerequisite for embryo implantation and is less likely to occur in vitro for reasons unknown. Extracellular vesicles (EVs) are secreted by the embryo into the culture medium. Yet the role that embryonic EVs and their cargo microRNAs (miRNAs) play in blastocyst hatching has not been elucidated, partially due to the difficulties of isolating them from low amounts of culture medium. Here, we optimized EV-miRNA isolation from medium conditioned by individually cultured bovine embryos and subsequently showed that miR-378a-3p, which was up-regulated in EVs secreted by blastocysts, plays a crucial role in promoting blastocyst hatching. This demonstrates the regulatory effect of miR-378-3p on hatching, which is an established embryo quality parameter linked with implantation.
Extracellular vesicles (EVs) and their cargo microRNAs (miRNAs) are important regulators of embryo development to the blastocyst stage and beyond. Before implantation can take place, hatching of blastocysts from their zona pellucida is required. However, underlying mechanisms by which blastocyst formation and hatching are initiated remain largely unknown. Here, we provide evidence that embryonic EVs containing bta-miR-378a-3p play a crucial role in blastocyst hatching, using a bovine model. A customized procedure was used to isolate EV-miRNAs from culture droplets conditioned by individual bovine embryos that either developed to the blastocyst stage or did not (nonblastocyst). RNA sequencing identified 69 differentially expressed miRNAs between EVs derived from blastocyst conditioned medium (CM) and nonblastocyst CM. Among the miRNAs up-regulated in blastocyst CM, we selected bta-miR-378a-3p for further validation by functionality testing on developing in vitro embryos by means of mimics and inhibitors. Supplementing the embryo culture medium with miR-378a-3p mimic significantly improved blastocyst quality, with higher cell numbers and reduced apoptosis, and improved hatching, while the opposite was found after supplementation with miR-378a-3p inhibitor (
P < 0.01). Transcriptomic analysis of embryos treated with miR-378 mimic/inhibitor showed differential expression (
P < 0.01) of genes associated with embryo development and implantation, including
RAP1GAP,
ARFGEF2,
SLC7A6,
CENPA,
SP1,
LDLR,
PYCR1,
MYD88,
TPP1, and
NCOA3. In conclusion, miR-378a-3p is up-regulated in EVs secreted by embryos that develop to the blastocyst stage, and this EV-derived miR-378a-3p increases blastocyst quality and regulates embryo hatching, which is essential for embryo implantation.