首页    期刊浏览 2024年12月06日 星期五
登录注册

文章基本信息

  • 标题:Preliminary Report on Intestinal Flora Disorder, Faecal Short-Chain Fatty Acid Level Decline and Intestinal Mucosal Tissue Weakening Caused by Litchi Extract to Induce Systemic Inflammation in HFA Mice
  • 本地全文:下载
  • 作者:Dongfang Sun ; Chen Wang ; Lijun Sun
  • 期刊名称:Nutrients
  • 电子版ISSN:2072-6643
  • 出版年度:2022
  • 卷号:14
  • 期号:4
  • DOI:10.3390/nu14040776
  • 语种:English
  • 出版社:MDPI Publishing
  • 摘要:Certain foods are known as “heating” foods in Chinese medicine. Over-consumption of these foods can lead to symptoms known as “heating up”. These symptoms have been shown to be symptoms of systemic low-grade inflammation. However, the mechanism by which these foods cause inflammation is not clear. In this preliminary study, we investigated dysbacteriosis of the gut microbiota as a possible cause of inflammation by litchi, a typical “heating” food. A human flora-associated (HFA) mouse model (donor: n = 1) was constructed. After gavaging the mice with litchi extract suspension at low, medium and high doses (400, 800, 1600 mg/kg·d −1, respectively) (n = 3) for 7 days, the serum levels of inflammatory cytokines, gut microbiota, the concentration of SCFAs and the integrity of the intestinal mucosal barrier were measured. The results revealed significant increases in the abundance of Prevotella and Bacteroides. A significant increase in the abundance of Bilophila and a decrease in Megasomonas was observed in the high-dose group. High-dose litchi intervention led to a decrease of most SCFA levels in the intestine. It also caused a more than two-fold increase in the serum TNF-α level and LPS level but a decrease in the IL-1β and IL-6 levels. Medium- and high-dose litchi intervention caused widening of the intestinal epithelial cell junction complex and general weakening of the intestinal mucosal barrier as well as reduced energy conversion efficiency of the gut microbiota. These data suggest that litchi, when consumed excessively, can lead to a low degree of systematic inflammation and this is linked to its ability to cause dysbacteriosis of the gut microbiota, decrease SCFAs and weaken the intestinal mucosal tissues.
  • 关键词:engut microbiotasystemic inflammationlitchi
国家哲学社会科学文献中心版权所有