首页    期刊浏览 2024年12月13日 星期五
登录注册

文章基本信息

  • 标题:A complete description of thermodynamic stabilities of molecular crystals
  • 本地全文:下载
  • 作者:Venkat Kapil ; Edgar A. Engel
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2022
  • 卷号:119
  • 期号:6
  • DOI:10.1073/pnas.2111769119
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance Predicting stable polymorphs of molecular crystals remains one of the grand challenges of computational science. Current methods invoke approximations to electronic structure and statistical mechanics and thus fail to consistently reproduce the delicate balance of physical effects determining thermodynamic stability. We compute the rigorous ab initio Gibbs free energies for competing polymorphs of paradigmatic compounds, using machine learning to mitigate costs. The accurate description of electronic structure and full treatment of quantum statistical mechanics allow us to predict the experimentally observed phase behavior. This constitutes a key step toward the first-principles design of functional materials for applications from photovoltaics to pharmaceuticals. Predictions of relative stabilities of (competing) molecular crystals are of great technological relevance, most notably for the pharmaceutical industry. However, they present a long-standing challenge for modeling, as often minuscule free energy differences are sensitively affected by the description of electronic structure, the statistical mechanics of the nuclei and the cell, and thermal expansion. The importance of these effects has been individually established, but rigorous free energy calculations for general molecular compounds, which simultaneously account for all effects, have hitherto not been computationally viable. Here we present an efficient “end to end” framework that seamlessly combines state-of-the art electronic structure calculations, machine-learning potentials, and advanced free energy methods to calculate ab initio Gibbs free energies for general organic molecular materials. The facile generation of machine-learning potentials for a diverse set of polymorphic compounds—benzene, glycine, and succinic acid—and predictions of thermodynamic stabilities in qualitative and quantitative agreement with experiments highlight that predictive thermodynamic studies of industrially relevant molecular materials are no longer a daunting task.
  • 关键词:enstatistical mechanicsmachine learningab initio thermodynamicspolymorphism
国家哲学社会科学文献中心版权所有