期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2021
卷号:118
期号:49
DOI:10.1073/pnas.2108884118
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Significance
A systematic investigation of the effects of sample thickness on electron scattering in electron cryo-microscopy (cryo-EM) was previously not feasible. Here, methods are employed to investigate the effects of increasing sample thickness. Near identical protein crystals are used as samples, and microcrystal electron diffraction data are used to assess the effects of thickness. These experiments were conducted using the three most-common accelerating voltages in cryo-EM, and data were compared using the calculated inelastic mean free path. Structures may be determined using crystals up to twice the inelastic mean free path. No coherent information remains at thicknesses over four times the mean free path. This study provides limits for biological specimen thickness with implications for all cryo-EM methods.
The relationship between sample thickness and quality of data obtained is investigated by microcrystal electron diffraction (MicroED). Several electron microscopy (EM) grids containing proteinase K microcrystals of similar sizes from the same crystallization batch were prepared. Each grid was transferred into a focused ion beam and a scanning electron microscope in which the crystals were then systematically thinned into lamellae between 95- and 1,650-nm thick. MicroED data were collected at either 120-, 200-, or 300-kV accelerating voltages. Lamellae thicknesses were expressed in multiples of the corresponding inelastic mean free path to allow the results from different acceleration voltages to be compared. The quality of the data and subsequently determined structures were assessed using standard crystallographic measures. Structures were reliably determined with similar quality from crystalline lamellae up to twice the inelastic mean free path. Lower resolution diffraction was observed at three times the mean free path for all three accelerating voltages, but the data quality was insufficient to yield structures. Finally, no coherent diffraction was observed from lamellae thicker than four times the calculated inelastic mean free path. This study benchmarks the ideal specimen thickness with implications for all cryo-EM methods.
关键词:Cryo-EM; MicroED; FIB milling; electron scattering; mean free path