摘要:AbstractMiniaturization of biomedical and chemical research areas is performed using microfluidic techniques. Droplet-based microfluidic applications are of high interest for various applications, e.g., high-throughput screening assays. Many of them are based on simple water-in-oil (w/o) or oil-in-water (o/w) emulsions that are easily to produce. More complex assays based on separate compartments require the use of multiple emulsions, such as water-in-oil-in-water (w/o/w) or oil-in-water-in-oil (o/w/o) emulsions. In this study an easy, fast to establish method to generate agarose-solidified (w/w/o) double emulsions with ∼55 µm in diameter, in which both agarose-phases are not separated by a surfactant stabilized oil is described. An off-chip emulsion-breaking and washing step of the inner agarose droplets based on density gradient centrifugation was designed, offering new possibilities for high-throughput assays on picoliter scale. In brief, this paper reports:•the protocol to generate agarose-solidified (w/w/o) double emulsions non-seperated by surfactant stabilized oil;•an off-chip washing protocol of agarose-solidified emulsions based on density gradient centrifugation.Graphical abstractDisplay Omitted