首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Electronic case report forms generation from pathology reports by ARGO, automatic record generator for onco-hematology
  • 本地全文:下载
  • 作者:Gian Maria Zaccaria ; Vito Colella ; Simona Colucci
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • DOI:10.1038/s41598-021-03204-z
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:The unstructured nature of Real-World (RW) data from onco-hematological patients and the scarce accessibility to integrated systems restrain the use of RW information for research purposes. Natural Language Processing (NLP) might help in transposing unstructured reports into standardized electronic health records. We exploited NLP to develop an automated tool, named ARGO (Automatic Record Generator for Onco-hematology) to recognize information from pathology reports and populate electronic case report forms (eCRFs) pre-implemented by REDCap. ARGO was applied to hemo-lymphopathology reports of diffuse large B-cell, follicular, and mantle cell lymphomas, and assessed for accuracy (A), precision (P), recall (R) and F1-score (F) on internal (n = 239) and external (n = 93) report series. 326 (98.2%) reports were converted into corresponding eCRFs. Overall, ARGO showed high performance in capturing (1) identification report number (all metrics > 90%), (2) biopsy date (all metrics > 90% in both series), (3) specimen type (86.6% and 91.4% of A, 98.5% and 100.0% of P, 92.5% and 95.5% of F, and 87.2% and 91.4% of R for internal and external series, respectively), (4) diagnosis (100% of P with A, R and F of 90% in both series). We developed and validated a generalizable tool that generates structured eCRFs from real-life pathology reports.
国家哲学社会科学文献中心版权所有