首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Nonparametric continuous-time identification of linear systems: theory, implementation and experimental results
  • 本地全文:下载
  • 作者:M. Mazzoleni ; M. Scandella ; S. Formentin
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:20
  • 页码:699-704
  • DOI:10.1016/j.ifacol.2021.11.253
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper presents an algorithm for continuous-time identification of linear dynamical systems using kernel methods. When the system is asymptotically stable, also the identified model is guaranteed to share such a property. The approach embeds the selection of the model complexity through optimization of the marginal likelihood of the data thanks to its Bayesian interpretation. The output of the algorithm is the continuous-time transfer function of the estimated model. In this work, we show the algorithmic and computational details of the approach, and test it on real experimental data from an Electro Hydro-Static Actuator (EHSA).
  • 关键词:KeywordsSoftware for system identificationKernel methods
国家哲学社会科学文献中心版权所有