首页    期刊浏览 2025年03月01日 星期六
登录注册

文章基本信息

  • 标题:High-throughput sequencing for species authentication and contamination detection of 63 cell lines
  • 本地全文:下载
  • 作者:Oliver Lung ; Rebecca Candlish ; Michelle Nebroski
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • DOI:10.1038/s41598-021-00779-5
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Cell lines are widely used in research and for diagnostic tests and are often shared between laboratories. Lack of cell line authentication can result in the use of contaminated or misidentified cell lines, potentially affecting the results from research and diagnostic activities. Cell line authentication and contamination detection based on metagenomic high-throughput sequencing (HTS) was tested on DNA and RNA from 63 cell lines available at the Canadian Food Inspection Agency’s National Centre for Foreign Animal Disease. Through sequence comparison of the cytochrome c oxidase subunit 1 (COX1) gene, the species identity of 53 cell lines was confirmed, and eight cell lines were found to show a greater pairwise nucleotide identity in the COX1 sequence of a different species within the same expected genus. Two cell lines, LFBK-αvβ6 and SCP-HS, were determined to be composed of cells from a different species and genus. Mycoplasma contamination was not detected in any cell lines. However, several expected and unexpected viral sequences were detected, including part of the classical swine fever virus genome in the IB-RS-2 Clone D10 cell line. Metagenomics-based HTS is a useful laboratory QA tool for cell line authentication and contamination detection that should be conducted regularly.
国家哲学社会科学文献中心版权所有