期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2021
卷号:118
期号:40
DOI:10.1073/pnas.2026347118
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Significance
Tropical moist forests harbor much of the world’s biodiversity, but this diversity is not evenly distributed globally, with tropical moist forests in the Neotropics and Indomalaya generally exhibiting much greater diversity than in the Afrotropics. Here, we assess the ubiquity of this “pantropical diversity disparity” (PDD) using the present-day distributions of over 150,000 species of plants and animals, and we compare these distributions with a spatial model of diversification combined with reconstructions of plate tectonics, temperature, and aridity. Our study demonstrates that differences in paleoenvironmental dynamics between continents, including mountain building, aridification, and global temperature fluxes, can explain the PDD by shaping spatial and temporal patterns of species origination and extinction, providing a close match to observed distributions of plants and animals.
Far from a uniform band, the biodiversity found across Earth’s tropical moist forests varies widely between the high diversity of the Neotropics and Indomalaya and the relatively lower diversity of the Afrotropics. Explanations for this variation across different regions, the “pantropical diversity disparity” (PDD), remain contentious, due to difficulty teasing apart the effects of contemporary climate and paleoenvironmental history. Here, we assess the ubiquity of the PDD in over 150,000 species of terrestrial plants and vertebrates and investigate the relationship between the present-day climate and patterns of species richness. We then investigate the consequences of paleoenvironmental dynamics on the emergence of biodiversity gradients using a spatially explicit model of diversification coupled with paleoenvironmental and plate tectonic reconstructions. Contemporary climate is insufficient in explaining the PDD; instead, a simple model of diversification and temperature niche evolution coupled with paleoaridity constraints is successful in reproducing the variation in species richness and phylogenetic diversity seen repeatedly among plant and animal taxa, suggesting a prevalent role of paleoenvironmental dynamics in combination with niche conservatism. The model indicates that high biodiversity in Neotropical and Indomalayan moist forests is driven by complex macroevolutionary dynamics associated with mountain uplift. In contrast, lower diversity in Afrotropical forests is associated with lower speciation rates and higher extinction rates driven by sustained aridification over the Cenozoic. Our analyses provide a mechanistic understanding of the emergence of uneven diversity in tropical moist forests across 110 Ma of Earth’s history, highlighting the importance of deep-time paleoenvironmental legacies in determining biodiversity patterns.