首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:Identifying Children at Readmission Risk: At-Admission versus Traditional At-Discharge Readmission Prediction Model
  • 本地全文:下载
  • 作者:Hasan Symum ; José Zayas-Castro ; Sílvia Caldeira
  • 期刊名称:Healthcare
  • 电子版ISSN:2227-9032
  • 出版年度:2021
  • 卷号:9
  • 期号:10
  • DOI:10.3390/healthcare9101334
  • 语种:English
  • 出版社:MDPI Publishing
  • 摘要:The timing of 30-day pediatric readmissions is skewed with approximately 40% of the incidents occurring within the first week of hospital discharges. The skewed readmission time distribution coupled with delay in health information exchange among healthcare providers might offer a limited time to devise a comprehensive intervention plan. However, pediatric readmission studies are thus far limited to the development of the prediction model after hospital discharges. In this study, we proposed a novel pediatric readmission prediction model at the time of hospital admission which can improve the high-risk patient selection process. We also compared proposed models with the standard at-discharge readmission prediction model. Using the Hospital Cost and Utilization Project database, this prognostic study included pediatric hospital discharges in Florida from January 2016 through September 2017. Four machine learning algorithms—logistic regression with backward stepwise selection, decision tree, Support Vector machines (SVM) with the polynomial kernel, and Gradient Boosting—were developed for at-admission and at-discharge models using a recursive feature elimination technique with a repeated cross-validation process. The performance of the at-admission and at-discharge model was measured by the area under the curve. The performance of the at-admission model was comparable with the at-discharge model for all four algorithms. SVM with Polynomial Kernel algorithms outperformed all other algorithms for at-admission and at-discharge models. Important features associated with increased readmission risk varied widely across the type of prediction model and were mostly related to patients’ demographics, social determinates, clinical factors, and hospital characteristics. Proposed at-admission readmission risk decision support model could help hospitals and providers with additional time for intervention planning, particularly for those targeting social determinants of children’s overall health.
  • 关键词:enreadmission;machine learning;pediatrics
国家哲学社会科学文献中心版权所有