首页    期刊浏览 2025年01月08日 星期三
登录注册

文章基本信息

  • 标题:Posterior asymptotics in Wasserstein metrics on the real line
  • 本地全文:下载
  • 作者:Minwoo Chae ; Pierpaolo De Blasi ; Stephen G. Walker
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2021
  • 卷号:15
  • 期号:2
  • 页码:3635-3677
  • DOI:10.1214/21-EJS1869
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:In this paper, we use the class of Wasserstein metrics to study asymptotic properties of posterior distributions. Our first goal is to provide sufficient conditions for posterior consistency. In addition to the well-known Schwartz’s Kullback–Leibler condition on the prior, the true distribution and most probability measures in the support of the prior are required to possess moments up to an order which is determined by the order of the Wasserstein metric. We further investigate convergence rates of the posterior distributions for which we need stronger moment conditions. The required tail conditions are sharp in the sense that the posterior distribution may be inconsistent or contract slowly to the true distribution without these conditions. Our study involves techniques that build on recent advances on Wasserstein convergence of empirical measures. We apply the results to some examples including a Dirichlet process mixture prior and conduct a simulation study for further illustration.
  • 关键词:62F15; 62G07; 62G20; Dirichlet process mixture; nonparametric Bayesian inference; posterior consistency; posterior convergence rate; Wasserstein metrics
国家哲学社会科学文献中心版权所有