首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Optimal nonparametric change point analysis
  • 本地全文:下载
  • 作者:Oscar Hernan Madrid Padilla ; Yi Yu ; Daren Wang
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2021
  • 卷号:15
  • 期号:1
  • 页码:1154-1201
  • DOI:10.1214/21-EJS1809
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We study change point detection and localization for univariate data in fully nonparametric settings, in which at each time point, we acquire an independent and identically distributed sample from an unknown distribution that is piecewise constant. The magnitude of the distributional changes at the change points is quantified using the Kolmogorov–Smirnov distance. Our framework allows all the relevant parameters, namely the minimal spacing between two consecutive change points, the minimal magnitude of the changes in the Kolmogorov–Smirnov distance, and the number of sample points collected at each time point, to change with the length of the time series. We propose a novel change point detection algorithm based on the Kolmogorov–Smirnov statistic and show that it is nearly minimax rate optimal. Our theory demonstrates a phase transition in the space of model parameters. The phase transition separates parameter combinations for which consistent localization is possible from the ones for which this task is statistically infeasible. We provide extensive numerical experiments to support our theory.
  • 关键词:62G05; CUSUM; Kolmogorov–Smirnov statistic; Minimax optimality; nonparametric; phase transition
国家哲学社会科学文献中心版权所有