首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Adaptive Sampling for Structure-Preserving Model Order Reduction of Port-Hamiltonian Systems ⁎
  • 本地全文:下载
  • 作者:Paul Schwerdtner ; Matthias Voigt
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2021
  • 卷号:54
  • 期号:19
  • 页码:143-148
  • DOI:10.1016/j.ifacol.2021.11.069
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractWe present an adaptive sampling strategy for the optimization-based structure-preserving model order reduction (MOR) algorithm developed in [Schwerdtner, P. and Voigt, M. (2020). Structure-preserving model order reduction by parameter optimization, Preprint arXiv:2011.07567]. This strategy reduces the computational demand and the required a priori knowledge about the given full-order model, while at the same time retaining a high accuracy compared to other structure-preserving but also unstructured MOR algorithms. A numerical study with a port-Hamiltonian benchmark system demonstrates the effectiveness of our method when combined with this new adaptive sampling strategy. We also investigate the distribution of the sample points.
  • 关键词:Keywordsmodel reductionH-infinity optimizationstructured systemsport-Hamiltonian systemsstructure-preserving methods
国家哲学社会科学文献中心版权所有