首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Distributed Imitation-Orientated Deep Reinforcement Learning Method for Optimal PEMFC Output Voltage Control
  • 本地全文:下载
  • 作者:Jiawen Li ; Yaping Li ; Tao Yu
  • 期刊名称:Frontiers in Energy Research
  • 电子版ISSN:2296-598X
  • 出版年度:2021
  • 卷号:9
  • DOI:10.3389/fenrg.2021.741101
  • 语种:English
  • 出版社:Frontiers Media S.A.
  • 摘要:In order to improve the stability of proton exchange membrane fuel cell (PEMFC) output voltage, a data-driven output voltage control strategy based on regulation of the duty cycle of the DC-DC converter is proposed in this paper. In detail, an imitation-oriented twin delay deep deterministic (IO-TD3) policy gradient algorithm which offers a more robust voltage control strategy is demonstrated. This proposed output voltage control method is a distributed deep reinforcement learning training framework, the design of which is guided by the pedagogic concept of imitation learning. The effectiveness of the proposed control strategy is experimentally demonstrated.
国家哲学社会科学文献中心版权所有