首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:Indonesian Sentence Boundary Detection using Deep Learning Approaches
  • 本地全文:下载
  • 作者:Joan Santoso ; Esther Irawati Setiawan ; Christian Nathaniel Purwanto
  • 期刊名称:Knowledge Engineering and Data Science
  • 印刷版ISSN:2597-4602
  • 电子版ISSN:2597-4637
  • 出版年度:2021
  • 卷号:4
  • 期号:1
  • 页码:38-48
  • DOI:10.17977/um018v4i12021p38-48
  • 语种:English
  • 出版社:Universitas Negeri Malang
  • 摘要:Detecting the sentence boundary is one of the crucial pre-processing steps in natural language processing. It can define the boundary of a sentence since the border between a sentence, and another sentence might be ambiguous. Because there are multiple separators and dynamic sentence patterns, using a full stop at the end of a sentence is sometimes inappropriate. This research uses a deep learning approach to split each sentence from an Indonesian news document. Hence, there is no need to define any handcrafted features or rules. In Part of Speech Tagging and Named Entity Recognition, we use sequence labeling to determine sentence boundaries. Two labels will be used, namely O as a non-boundary token and E as the last token marker in the sentence. To do this, we used the Bi-LSTM approach, which has been widely used in sequence labeling. We have proved that our approach works for Indonesian text using pre-trained embedding in Indonesian, as in previous studies. This study achieved an F1-Score value of 98.49 percent. When compared to previous studies, the achieved performance represents a significant increase in outcomes. .
国家哲学社会科学文献中心版权所有