摘要:Adding value to agro-industrial residues is becoming increasingly important, satisfying needs to promote resources’ use efficiency and a more sustainable and circular economy. This work performs a parametric and kinetic study of enzymatic esterification of lard and tallow with high acidity, obtained by the rendering of slaughter by-products, allowing their use as a feed ingredient and increasing their market value. After an initial analysis of potential enzyme candidates, a <i>Candida antarctica</i> lipase B was selected as a biocatalyst for converting free fatty acids (FFA) to esters, using excess ethanol as the reagent. Results show that the fat acidity can be reduced by at least 67% in up to 3 h of reaction time at 45 °C, using the mass ratios of 3.25 ethanol/FFA and 0.0060 enzyme/fat. Kinetic modelling shows an irreversible second-order rate law, function of FFA, and ethanol concentration better fitting the experimental results. Activation energy is 54.7 kJ/mol and pre-exponential factor is 4.6 × 10<sup>6</sup> L mol<sup>−1</sup> min<sup>−1</sup>.