摘要:The gradient method used to estimate soil CO<sub>2</sub> flux is distinctive because it can provide additional information about CO<sub>2</sub> production and consumption of soil profile. However, choosing an appropriate gas diffusion model with confidence with the gradient method is a big challenge. There is no universal optimal diffusion model but only the most suitable model in specific soils. This paper evaluates the applicability of five commonly used diffusion models in laboratory with changing soil properties and in a forest farm, respectively. When soil moisture, bulk density and fertility status were changed in the laboratory, the applicability of the five diffusion models was discussed. Moreover, this paper shows diurnal variation of soil CO<sub>2</sub> flux estimated by the gradient method under four different climatic conditions in the forest farm, and the applicability of the five models was also analyzed. Both laboratory and forest experimental results confirm that the estimating accuracy of the Moldrup model is the highest, followed by the Millington–Quirk model, while those of the Penman, Marshall and Penman–Millington–Quirk models are poor. Furthermore, the results indicate that soil CO<sub>2</sub> flux estimated by the gradient method is highly sensitive to the diffusion model and insensitive to the changes of soil properties. In general, the gradient method can be used as a practical, cost-effective tool to study soil respiration only when the appropriate diffusion model is first determined.
关键词:CO2 flux; diffusion model; the gradient method; soil respiration