首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Time-Series Trend of Pandemic SARS-CoV-2 Variants Visualized Using Batch-Learning Self-Organizing Map for Oligonucleotide Compositions
  • 本地全文:下载
  • 作者:Takashi Abe ; Takashi Abe ; Ryuki Furukawa
  • 期刊名称:Data Science Journal
  • 电子版ISSN:1683-1470
  • 出版年度:2021
  • 卷号:20
  • 期号:1
  • 页码:1-12
  • DOI:10.5334/dsj-2021-029
  • 语种:English
  • 出版社:Ubiquity Press
  • 摘要:To confront the global threat of coronavirus disease 2019, a massive number of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome sequences have been decoded, with the results promptly released through the GISAID database. Based on variant types, eight clades have already been defined in GISAID, but the diversity can be far greater. Owing to the explosive increase in available sequences, it is important to develop new technologies that can easily grasp the whole picture of the big-sequence data and support efficient knowledge discovery. An ability to efficiently clarify the detailed time-series changes in genome-wide mutation patterns will enable us to promptly identify and characterize dangerous variants that rapidly increase their population frequency. Here, we collectively analyzed over 150,000 SARS?CoV-2 genomes to understand their overall features and time-dependent changes using a batch-learning self-organizing map (BLSOM) for oligonucleotide composition, which is an unsupervised machine learning method. BLSOM can separate clades defined by GISAID with high precision, and each clade is subdivided into clusters, which shows a differential increase/decrease pattern based on geographic region and time. This allowed us to identify prevalent strains in each region and to show the commonality and diversity of the prevalent strains. Comprehensive characterization of the oligonucleotide composition of SARS-CoV-2 and elucidation of time-series trends of the population frequency of variants can clarify the viral adaptation processes after invasion into the human population and the time-dependent trend of prevalent epidemic strains across various regions, such as continents.
  • 关键词:COVID;19;SARS;CoV;2;Oligonucleotide composition;Batch;Learning Self;Organizing Map (BLSOM);Unsupervised explainable machine learning;Time;series trend
国家哲学社会科学文献中心版权所有