首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Increased apoptosis and hypomyelination in cerebral white matter of macular mutant mouse brain
  • 作者:Shoichi Takikita ; Tomoyuki Takano ; Tsutomu Narita
  • 期刊名称:Molecular Genetics and Metabolism Reports
  • 印刷版ISSN:2214-4269
  • 出版年度:2015
  • 卷号:4
  • 页码:25-29
  • DOI:10.1016/j.ymgmr.2015.05.005
  • 出版社:Elsevier B.V.
  • 摘要:Abstract Hypomyelination in developing brain is often accompanied by congenital metabolic disorders. Menkes kinky hair disease is an X-linked neurodegenerative disease of impaired copper transport, resulting from a mutation of the Menkes disease gene, a transmembrane copper-transporting p-type {ATPase} gene (ATP7A). In a macular mutant mouse model, the murine ortholog of Menkes gene (mottled gene) is mutated, and widespread neurodegeneration and subsequent death are observed. Although some biochemical analysis of myelin protein in macular mouse has been reported, detailed histological study of myelination in this mouse model is currently lacking. Since myelin abnormality is one of the neuropathologic findings of human Menkes disease, in this study early myelination in macular mouse brain was evaluated by immunohistochemistry. Two-week-old macular mice and normal littermates were perfused with 4% paraformaldehyde. Immunohistochemical staining of paraffin embedded and vibratome sections was performed using antibodies against either CNPase, cleaved caspase-3 or {O4} (marker of immature oligodendrocytes). This staining showed that cerebral myelination in macular mouse was generally hypoplastic and that hypomyelination was remarkable in internal capsule, corpus callosum, and cingulate cortex. In addition, an increased number of cleaved caspase-3 positive cells were observed in corpus callosum and internal capsule. Copper deficiency induced by low copper diet has been reported to induce oligodendrocyte dysfunction and leads to hypomyelination in this mouse model. Taken together, hypomyelination observed in this study in a mouse model of Menkes disease is assumed to be induced by increased apoptosis of immature oligodendrocytes in developing cerebrum, through deficient intracellular copper metabolism.
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有