摘要:This paper addresses the problem of approximating the future value distribution of a large and heterogeneous life insurance portfolio which would play a relevant role, for instance, for solvency capital requirement valuations. Based on a metamodel, we first select a subset of <i>representative policies</i> in the portfolio. Then, by using Monte Carlo simulations, we obtain a rough estimate of the policies’ values at the chosen future date and finally we approximate the distribution of a single policy and of the entire portfolio by means of two different approaches, the ordinary least-squares method and a regression method based on the class of generalized beta distribution of the second kind. Extensive numerical experiments are provided to assess the performance of the proposed models.